

LOS ANGELES

COUNTYWIDE INFORMATION EXCHANGE NETWORK

RECOMMENDATIONS
FOR THE IMPLEMENTATION OF

NEW TRAFFIC CONTROL SYSTEM
COMMAND/DATA INTERFACE PROGRAMS

FINAL – REVISION 5

Prepared for:
Los Angeles County

Department of Public Works

Prepared by:

626 Wilshire Boulevard
Suite 818

Los Angeles, CA 90017

May 19th, 2006

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page i May 19th, 2006

TABLE OF CONTENTS

 PAGE #

1. INTRODUCTION.. 1-1
1.1 Purpose of the Document.. 1-1
1.2 Intended Audience .. 1-1
1.3 Assumptions.. 1-1

2. TCS CDI INTERFACE REQUIREMENTS... 2-1
2.1 CORBA Interfaces .. 2-1

2.1.1 IENRTData.idl ... 2-1
2.1.1.1 Event... 2-2
2.1.1.2 EventSeq... 2-2
2.1.1.3 EventGroup and EventGroupSeq ... 2-2

2.1.2 TCS.idl ... 2-3
2.1.2.1 Mode Enumeration ... 2-3
2.1.2.2 SpecialFunction Enumeration .. 2-4
2.1.2.3 Device Structure ... 2-4
2.1.2.4 DeviceList Sequence .. 2-4
2.1.2.5 Version Structure.. 2-5
2.1.2.6 Status Enumeration... 2-5
2.1.2.7 ConfigurationAccessor Interface.. 2-5

2.1.3 TCSData.idl .. 2-6
2.1.3.1 Code Typedef ... 2-6
2.1.3.2 CodeList Sequence ... 2-6
2.1.3.3 DeviceDataTypes Structure.. 2-6
2.1.3.4 DeviceDataTypeList Sequence .. 2-6
2.1.3.5 DeviceCode Structure... 2-7
2.1.3.6 DeviceCodeList Sequence.. 2-7
2.1.3.7 DataAccessor Interface... 2-7

2.1.3.7.1 Configuration Retrieval Methods.. 2-8
2.1.3.7.2 Data Retrieval Method .. 2-8
2.1.3.7.3 Destroy Method.. 2-8

2.1.3.8 DataAccessorFactory Interface .. 2-8
2.1.4 TCSCommand.idl... 2-9

2.1.4.1 CommandAccessor Interface ... 2-9
2.1.4.1.1 setCDIPlan Method ... 2-10
2.1.4.1.2 changeMode Method... 2-10
2.1.4.1.3 releaseControl Method .. 2-10

2.1.4.2 CommandAccessorFactory Interface ... 2-10
2.2 TCS CDI Performance Requirements... 2-11

2.2.1 Data Access Requirements ... 2-11
2.2.2 Data Reporting Requirements .. 2-11

2.2.2.1 IEN_INTERSECTIONINFO ... 2-12
2.2.2.2 IEN_INTERSECTIONRTSTATUS .. 2-12
2.2.2.3 IEN_INTERSECTIONRTSUMMARY... 2-12
2.2.2.4 IEN_PHASE_STATEDATA ... 2-12

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page ii May 19th, 2006

2.2.2.5 IEN_PEDPHASE_STATEDATA.. 2-12
2.2.2.6 IEN_VEHCALL_STATEDATA ... 2-13
2.2.2.7 IEN_LASTCYCLE_PHASEDATA .. 2-13
2.2.2.8 IEN_TP_PHASEDATA... 2-13
2.2.2.9 IEN_DETECTORINFO ... 2-13
2.2.2.10 IEN_DETECTORSTATE .. 2-13
2.2.2.11 IEN_SECTIONINFO ... 2-13
2.2.2.12 IEN_SECTIONSTATE .. 2-14

2.2.3 Command Execution Requirements ... 2-14
2.3 Usage of the CORBA Naming Service... 2-14

2.3.1 IEN Naming Service Location ... 2-14
2.3.2 Published Names .. 2-14

2.4 TCS CDI Event Format .. 2-15
2.4.1 Event Types.. 2-15
2.4.2 Command Events ... 2-16

2.4.2.1 IEN_COMMANDRETURN Event Type .. 2-16
2.4.3 Intersection Events ... 2-16

2.4.3.1 IEN_INTERSECTIONINFO Event Type.. 2-16
2.4.3.2 IEN_INTERSECTIONRTSTATUS Event Format.................................... 2-17
2.4.3.3 IEN_INTERSECTIONRTSUMMARY Event Format 2-19
2.4.3.4 IEN_PHASE_STATEDATA Event Type.. 2-22
2.4.3.5 IEN_PEDPHASE_STATEDATA Event Type .. 2-22
2.4.3.6 IEN_VEHCALL_STATEDATA Event Type.. 2-23
2.4.3.7 IEN_LASTCYCLE_PHASEDATA Event Type....................................... 2-23
2.4.3.8 IEN_TP_PHASEDATA Event Type ... 2-24

2.4.4 Detector Events .. 2-24
2.4.4.1 IEN_DETECTORINFO Event Type.. 2-24
2.4.4.2 IEN_DETECTORSTATE Event Type .. 2-26

2.4.5 Section Events .. 2-27
2.4.5.1 IEN_SECTIONINFO Event Type.. 2-27
2.4.5.2 IEN_SECTIONSTATE Event Type .. 2-28

3. EXAMPLE IMPLEMENTATION: SERIES 2000 TCS CDI.. 3-1

3.1 CORBA ORBS Used .. 3-1
3.2 Implementation Environment ... 3-1
3.3 Configuration Data.. 3-1
3.4 Series 2000 TCS CDI Main Routine .. 3-1

4. APPENDICES.. 4-1
4.1 Appendix A: TCS CDI CORBA IDL Files .. 4-1

4.1.1 IENRTData.idl ... 4-1
4.1.2 TCS.idl ... 4-3
4.1.3 TCSData.idl .. 4-6
4.1.4 TCSCommand.idl... 4-9

4.2 Appendix B: Series 2000 TCS CDI Configuration File ... 4-12
4.3 Appendix C: Diagnostic Settings in the Site Server Program 4-13

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page iii May 19th, 2006

TABLE OF EXHIBITS

 PAGE #
Table 2-1: Intersection Control Modes .. 2-3
Table 2-2: CDI Names in the Naming Service .. 2-14
Table 2-3: Event Format .. 2-15
Table 2-4: IEN Event Types .. 2-15
Table 2-5: Intersection Configuration Information.. 2-16
Table 2-6: IEN Controller Type Strings .. 2-17
Table 2-7: Intersection Real-Time Status Data.. 2-19
Table 2-8: Intersection Real-Time Summary Data.. 2-19
Table 2-9: Intersection Control Modes .. 2-20
Table 2-10: Intersection Signal States ... 2-20
Table 2-11: Intersection Preemption Types... 2-21
Table 2-12: Intersection Controller Alarm Bit Flags... 2-21
Table 2-13: Intersection Controller Communication States .. 2-21
Table 2-14: Intersection Controller Phase State Data.. 2-22
Table 2-15: Intersection Pedestrian Signal States.. 2-22
Table 2-16: Intersection Actuation Detector States ... 2-23
Table 2-17: Phase Data for Previous Intersection Cycle ... 2-23
Table 2-18: Controller Phase Maximum Data ... 2-24
Table 2-19: Detector Configuration Information... 2-24
Table 2-20: IEN Detector Classes.. 2-25
Table 2-21: IEN Detector Types.. 2-25
Table 2-22: IEN Detector Direction Codes ... 2-26
Table 2-23: Detector Status Information ... 2-26
Table 2-24: IEN Detector Status Codes... 2-27
Table 2-25: Section Configuration Information .. 2-27
Table 2-26: Section State Data .. 2-28
Table 2-27: IEN Section Control Modes ... 2-28
Table 4-1: Diagnostic Levels for the Site Server... 4-13

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page iv May 19th, 2006

REVISION HISTORY

VERSION DATE DESCRIPTION

Final 5/24/2004 • Final (Original Submittal)

Final

(Revision 1)
9/23/2004

• Response to BI Tran Questions

• Prioritize the IEN’s “Inbound” TCS
CDI Data Requirements

Final

(Revision 2)
11/19/2004 • Update IDL related sections with

latest TransCore version

Final

(Revision 3)
01/20/05

• Update Section 2.4 TCS CDI Event
Format according to IEN
implementation

Final

(Revision 4)
01/03/06 • Series 2000 CDI Software

Modications

Final

(Revison 5)
5/19/06 • Minor changes to detector status field

descriptions

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 1-1 May 19th, 2006

1. INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

The Los Angeles County Information Exchange Network (IEN) uses command/data interface
(CDI) programs as it’s interconnect to various traffic control systems. A CDI allows the IEN to
read a limited set of intersection, section, and detector data from a traffic control system (TCS),
and enables the IEN to send a limited set of commands to intersections and sections on the TCS.

The IEN communicates with TCS CDI programs using the Common Object Request Broker
Architecture (CORBA). In CORBA, interfaces are defined in Interface Definition Language
(IDL) files. They define the functionality of a server program without specifying its
implementation details. Interfaces expose (specify) methods and attributes that are implemented
by CORBA servers. A TCS CDI must support the set of CORBA interfaces defined in this
document.

This document will describe how CDI programs must implement these interfaces, and provide
implementation guidelines for use by the developers of other TCS systems when they create their
own TCS CDI applications. This document will use the TCS CDI that TransCore wrote for its
own Series 2000 TCS as a working example.

1.2 INTENDED AUDIENCE

Readers of this document are assumed to be software developers who are implementing a new
CDI for the IEN. They should have a working knowledge of CORBA programming in C++.
They should also understand the basic concepts of a computerized traffic control system.

1.3 ASSUMPTIONS

The TransCore Site Server application is the IEN component that will communicate with TCS
CDI programs. It uses the TAO ORB, which implements version 2.3 of the CORBA standard.
TCS CDI Developers must use an ORB implementation that supports at least version 2.2 of the
CORBA Specification.

The Los Angeles County DPW holds the copyright to the IEN source code developed
specifically for this program. The County may grant developers of TCS CDI programs the right
to view or copy the source code of the Series 2000 TCS CDI, which may be used as a guide to
development of other CDIs.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-1 May 19th, 2006

2. TCS CDI INTERFACE REQUIREMENTS

The TCS CDI interfaces were designed to enable the IEN Site Server process to communicate
with any traffic control system CDI. This could be a CDI for TransCore’s Series 2000 TCS, a
CDI for a BI Trans QuicNet system, the LA County TCS, or others.

While TCS implementations will vary, all TCS programs must meet the following requirements:

• TCS CDI programs must implement the objects defined in the CORBA interfaces that are
defined in Section 2.1: CORBA Interfaces.

• TCS CDI programs must meet performance requirements imposed on them by how the
IEN programs (the Site Server process in particular) use the interfaces. Performance
requirements are covered in Section 2.2: TCS CDI Performance Requirements.

• TCS CDI programs must publish their CommandAccessorFactory and
DataAccessorFactory objects to the CORBA naming service instance running on the Site
Server that connects to the TCS CDI as described in Section 2.3: Usage of the CORBA
Naming Service.

• TCS CDI programs must format data to be translated to the IEN as described in Section
2.4: TCS CDI Event Format.

This section of the document begins by describing the four (4) IDL files that define the IEN
interface to TCS CDI programs. The section continues by describing how TransCore’s Series
2000 TCS CDI implements the interface. CDI implementers may use the Series 2000 CDI as an
example of a working system. So long as they properly implement the CORBA interfaces, they
need not follow it in exact detail.

2.1 CORBA INTERFACES

The CDI must implement the CORBA interfaces in the IDL files described below. The
interfaces define a contract between the IEN processes that use data from traffic control systems
and TCS CDI programs.

The IDL files containing the interfaces that the TCS CDI must implement are:

• IENRTData.idl
• TCS.idl
• TCSData.idl
• TCSCommand.idl

Complete listings of the IDL files are provided in Appendix A.

2.1.1 IENRTData.idl

This file defines the IENRTData CORBA module, which contains basic type definitions and data
structures for all TCS data exchanged by IEN programs. The DeviceType enumeration defines
the kinds of traffic control system devices used in the IEN:
enum DeviceType
{

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-2 May 19th, 2006

 DT_SYSTEM,
 DT_SCHEDULE,
 DT_INTERSECTION,
 DT_SECTION,
 DT_DETECTOR,
 DT_SIGN,
 DT_CAMERA,
 DT_HAR
};

Traffic control systems need only concern themselves with the following device types:
DT_SYSTEM, DT_INTERSECTION, DT_SECTION, and DT_DETECTOR.

The file also defines the data structures that the CDI uses to send traffic control system data to
the IEN. These are the Event, EventSeq, EventGroup, and EventGroupSeq structures.

2.1.1.1 Event

The Event structure represents one kind of data for one device that the TCS exports to the IEN.
It contains an entity number, which represents the device ID, an event type, which defines the
kind of data that the Event structure contains, and a timestamp denoting when the event was
created. The rest of the structure contains areas that may contain long, short, octet, string, and
double values. The event type value indicates to clients and servers the components of the
Event structure that will be used for that particular event type.

See Section 2.3: TCS CDI Event Format for details of how the TCS CDI should create Event
structures.
struct Event
{
 short entityNumber; // entity number (unique to system and event type)
 short ienEventType; // type of event (see above)
 long timeStamp; // in the format HHMMSS
 sequence<long> longValues; // sequence of 32-bit values
 sequence<short> shortValues; // sequence of 16-bit values
 sequence<octet> octetValues; // sequence of bytes
 string stringValue;
 double doubleValue;
};

2.1.1.2 EventSeq

The EventSeq sequence contains a set of Event objects. Each time that the Site Server requests
data from the CDI process, it must return the requested data in an EventSeq sequence.
typedef sequence<Event> EventSeq;

2.1.1.3 EventGroup and EventGroupSeq

The IEN builds EventSeq structures that it receives from CDI programs into EventGroup and
EventGroupSeq structure for distribution around the network. CDI programs do not have to
build these structures.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-3 May 19th, 2006

2.1.2 TCS.idl

This file contains the definition of the TCS module. It includes the IENRTData.idl file. The
TCS.idl file is included by both the TCSData.idl and TCSCommand.idl files.

2.1.2.1 Mode Enumeration

/// Modes of operation

 enum Mode
 {
 NORMAL,
 LOCAL_TOD,
 FREE,
 TOD,
 RESPONSIVE,
 MANUAL,
 RELEASE
 };

This enumeration defines the valid control modes that a CDI should report for an intersection
controller, and the possible modes that the IEN may command for intersections and sections.
See Table 2-1 below for an explanation of the enumeration values.

Table 2-1: Intersection Control Modes

CONTROL
MODE EXPLANATION

TOD The central TCS chooses the timing pattern for the controller based on a central time-
of-day schedule.

NORMAL The central TCS chooses the timing pattern for the controller based on the timing
pattern for the section and system that contain the intersection.

RESPONSIVE The central TCS chooses the timing pattern for the intersection controller based on a
traffic responsive algorithm.

FREE The intersection controller should run free, with no programmed central timing pattern.

MANUAL The intersection controller should run a timing pattern selected by a central TCS
operator

LOCAL_TOD The intersection controller selects its timing pattern based on its own time-of-day
schedule.

RELEASE The IEN uses the RELEASE control mode to tell a TCS that the IEN wishes to release
external control of a device

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-4 May 19th, 2006

2.1.2.2 SpecialFunction Enumeration

enum SpecialFunction

{

 FLASH,

 SPECIAL_FUNCTION_1,

 SPECIAL_FUNCTION_2,

 SPECIAL_FUNCTION_3,

 SPECIAL_FUNCTION_4

};

The SpecialFunction enumeration defines the special function commands that an operator may
request for an intersection controller. It is not presently used, but is defined for future
implementation of commands to activate or deactivate the special function outputs of a controller
or put controllers into flash.

2.1.2.3 Device Structure

The Device structure defines a device identifier structure that contains a device type field and a
device ID field.

/// Device identifier number

typedef short DeviceID;

/// Unique identifier for a device in a given TCS

struct Device

{

 IENRTData::DeviceType type;

 DeviceID id;

};

2.1.2.4 DeviceList Sequence

The IEN uses the DeviceList sequence when requesting a list of available devices data from a
TCS CDI, and when sending a command to a list of TCS devices.

/// List of Device elements

typedef sequence<Device> DeviceList;

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-5 May 19th, 2006

2.1.2.5 Version Structure

The version structure contains software version information for a TCS CDI program. The
ConfigurationAccessor interface contains two Version structures, one to identify the version of
the IEN IDL expected by the CDI, and another to identify the version of the CDI software
running on the TCS. The structure defines the major version, minor version, and revision level
for the expected IDL and the version of the command or data accessor.
/// Version number (major.minor.revision)
struct Version
{

short major;
 short minor;
 short revision;
};

2.1.2.6 Status Enumeration

The Status enumeration contains overall status information for a command or data interface to a
traffic control system. The IEN expects that the CDI will report the TCS status as
SYSTEM_NORMAL during normal operation of the TCS and the CDI. A return of any other
status indicates that some or all TCS CDI features may not operate normally.
enum Status
{

/// Running normally
 SYSTEM_NORMAL,

 /// Initializing; features may be unavailable or uninitialized
 SYSTEM_STARTING,

 /// Shutting down; features may be unavailable or no longer updated
 SYSTEM_STOPPING,

 /// TCS is not running
 SYSTEM_SHUTDOWN,

 /// TCS is unable to run
 SYSTEM_ERROR
};

2.1.2.7 ConfigurationAccessor Interface

This is a base interface for the TCSCommandAccessor interface, which the IEN uses to send
commands to a TCS, and the TCSDataAccessor interfaces, which the IEN uses to get device data
from a TCS. It defines version information, status information, and exported device information
available for both interfaces.

Instructions for setting the values of these attributes are specified later in the document.

interface ConfigurationAccessor
{

/// @return Version number for TCS CORBA interface
 readonly attribute Version interfaceVersion;

 /// @return Version of TCS software
 readonly attribute Version systemVersion;

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-6 May 19th, 2006

 /// @return Name of TCS system
 readonly attribute string systemName;

 /// @return Current status of TCS
 readonly attribute Status systemStatus;

 /// @return list of configured devices of the given types
 DeviceList getAvailableDevices(in DeviceTypeList types);
};

2.1.3 TCSData.idl

The TCSData.idl file defines the TCSData module. It depends on the TCS.idl and
IENRtData.idl files. It defines the DataAccessor interface, which the IEN Site Server
program calls to get traffic control system data, and the DataAccessorFactory interface, which
the IEN Site Server calls to get an instance of the DataAccessor.

2.1.3.1 Code Typedef

The TCS data interface file uses the Code typedef for types of device data requested by the IEN.
typedef short Code;

Section 2.4.1 describes the device data/event codes currently defined for the IEN.

2.1.3.2 CodeList Sequence

The CodeList sequence is used to pass a list of device data types into or out of the methods of the
DataAccessor interface.

// List of data item code elements
typedef sequence<Code> CodeList;

2.1.3.3 DeviceDataTypes Structure

The DeviceDataTypes structure contains all of the data types that the IEN may request from the
CDI for a particular device type. It allows the IEN to query the CDI to determine which data
types the CDI supports.
 struct DeviceDataTypes
 {
 IENRTData::DeviceType type;
 CodeList dataTypes;
 };

2.1.3.4 DeviceDataTypeList Sequence

The DeviceDataTypeList sequence is returned from the CDI’s deviceDataTypes method to
indicate the complete set of device types that the CDI supports and the data types that the CDI
can return to the IEN in a getDeviceEventDataList method call.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-7 May 19th, 2006

2.1.3.5 DeviceCode Structure

The DeviceCode structure identifies one device that the IEN is requesting from the TCS CDI, the
kinds of data that the IEN is requesting for the device, and a flag indicating if change-only data is
requested for the device.
 struct DeviceCode
 {
 TCS::Device device;
 CodeList dataCodes;
 boolean changedOnly;
 };

2.1.3.6 DeviceCodeList Sequence

The IEN passes this sequence as a parameter to the getDeviceEventDataList method of the
DataAccessor interface. It identifies all device and data types that the IEN is requesting from the
TCS CDI at one time.
/// List of DeviceCode elements
typedef sequence<DeviceCode> DeviceCodeList;

2.1.3.7 DataAccessor Interface

The IEN programs call methods of the DataAccessor interface to get real-time traffic device data
from TCS CDI programs.
 /// Interface for retrieving data from TCS
 interface DataAccessor: TCS::ConfigurationAccessor
 {
 /// Instance name passed to DataAccessorFactory's
 /// CreateDataAccessor() method to create this instance.
 readonly attribute string clientName;

 /// Client calls this method when finished with this
 /// DataAccessor. Releases all resources associated with this
 /// instance.
 void destroy();

 /// @return the configured device list for this instance.
 TCS::DeviceList getDeviceList();

 /// Get the data type codes supported for all device types
 /// for which this CDI returns data.
 /// @return supported data types for all supported devices
 DeviceDataTypeList deviceDataTypes ();

 /// @return Data items for input device list.
 ///
 /// @param devices List of devices for which to get data. Each
 /// entry in the list has a device ID, requested
 /// data types, and a changeOnly flag indicating
 /// if the method should retrieve only changed
 /// data (if true), or all known data (if false).
 /// @return Sequence of IEN events containing requested
 /// requested data
 /// @throws SystemStatusException if system not currently
 /// running
 /// @throws Error if a device ID or data type in the
 /// device list is not supported.

 IENRTData::EventSeq getDeviceEventDataList(

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-8 May 19th, 2006

 in DeviceCodeList devices)
 raises (TCS::SystemStatusException,
 TCS::Error);
 };

2.1.3.7.1 Configuration Retrieval Methods

The getDeviceList method returns the list of devices supported by the TCS CDI, including their
identifiers and types. The deviceDataTypes method returns the data type codes returned by the
CDI program for all supported device types. The clientName attribute returns the client name set
for the DataAccessor when it was created by a DataAccessorFactory object, as discussed in
Section 2.1.3.8: DataAccessorFactory Interface below.

2.1.3.7.2 Data Retrieval Method

The data retrieval method, getDeviceEventDataList, retrieves data for the requested list of
devices. If a device’s changesOnly parameter is true, the CDI should return only the requested
data for the device that has changed since the CDI last checked it. If a device’s changesOnly
parameter is false, the CDI should retrieve all requested data for the device.

2.1.3.7.3 Destroy Method

The destroy method releases the resources owned by a given instance of the DataAccessor
object. The IEN calls it when it is finished using the DataAccessor object.

2.1.3.8 DataAccessorFactory Interface

The IEN Site Server calls this interface when it wishes to begin getting intersection data from a
traffic control system.
 /// Interface for creating instances of DataAccessor
 interface DataAccessorFactory
 {
 /// Create an instance of DataAccessor.
 ///
 /// @param clientName Text identifying the user
 /// of this interface. For
 /// informational and diagnostic
 /// purposes only.
 ///
 /// @param option Provides access to special
 /// functionality (generally for
 /// debugging or testing purposes).
 /// Always pass 0 unless you know
 /// what you're doing.
 /// @throws Error If the client name is empty or the
 /// option is not supported

 DataAccessor createDataAccessor(in string clientName,
 in long option)
 raises (TCS::Error);
 };

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-9 May 19th, 2006

2.1.4 TCSCommand.idl

The TCSCommand.idl file defines the TCSCommand module. It depends on the TCS.idl and
IENRtData.idl files. It defines the CommandAccessor interface, which the IEN Site Server
program calls to send commands from the IEN to traffic control devices on a TCS, and the
CommandAccessorFactory interface, which the IEN Site Server calls to get an instance of the
CommandAccessor.

2.1.4.1 CommandAccessor Interface

The IEN sends commands to traffic control system command/data interface programs using the
CommandAccessor interface.
/// Interface that allows clients to send commands to Series 2000
interface CommandAccessor: TCS::ConfigurationAccessor
 {
 /// Text passed to DataAccessorFactory::CreateDataAccessor()
 /// to create this instance.
 readonly attribute string clientName;

 /// Client calls this method when finished with this CommandAcceptor.
 /// Releases all resources associated with this instance.
 void destroy();

 /// Change CDI plan number
 ///
 /// @param devices List of devices for which to change the plan
 /// @param planNumber New plan number for the requested devices
 void setCDIPlan(
 in TCS::DeviceList devices,
 in short planNumber
) raises (
 CommandsNotAccepted,
 InvalidPlanNumber,
 TCS::UnknownDevices,
 TCS::SystemStatusException,
 TCS::Error
);

 /// Change operational mode of specified devices.
 ///
 /// @param devices List of devices for which to change the mode
 /// @param newMode New operational mode for the devices on the list
 void changeMode(
 in TCS::DeviceList devices,
 in TCS::Mode newMode
) raises (
 CommandsNotAccepted,
 InvalidMode,
 TCS::UnknownDevices,
 TCS::SystemStatusException,
 TCS::Error
);

 /// Release IEN control of a list of TCS devices
 ///
 /// @param devices List of devices for which to release IEN control
 void releaseControl(
 in TCS::DeviceList devices
) raises (
 TCS::UnknownDevices,

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-10 May 19th, 2006

 TCS::SystemStatusException,
 TCS::Error
);
};

2.1.4.1.1 setCDIPlan Method

The setCDIPlan method changes the timing plan or timing pattern number being run by a list of
intersection controllers and sections on the TCS. The CDI should make a “best effort” attempt to
command the controllers and sections to run the requested timing pattern or plan number. If it
cannot implement the requested command on one of the requested devices, it should raise one of
the exceptions defined in the module.

2.1.4.1.2 changeMode Method

changeMode changes the operating mode of the devices on the list to the requested mode. See
Table 2-1 for a list of possible operating modes for a section or intersection. If the CDI does not
support a requested mode at all, it should raise the InvalidMode exception.

2.1.4.1.3 releaseControl Method

This method ends external control of all devices on the requested list. The CDI should return the
devices to the state desired by the TCS when the CDI receives the releaseControl method call.

2.1.4.2 CommandAccessorFactory Interface

The IEN Site Server calls this interface when it wishes to begin sending commands to devices on
a traffic control system.
/// Interface for creating instances of CommandAcceptor
interface CommandAccessorFactory
{

/// Create an instance of DataAccessor.
 ///
 /// @param clientName Text identifying the user
 /// of this interface. For
 /// informational and diagnostic
 /// purposes.
 ///
 /// @param option Provides access to special
 /// functionality (generally for
 /// debugging or testing purposes).
 /// Always pass 0 unless you know
 /// what you're doing.
 CommandAccessor createCommandAccessor(

in string clientName,
 in long option

) raises (TCS::Error);

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-11 May 19th, 2006

2.2 TCS CDI PERFORMANCE REQUIREMENTS

The TCS CDI has two sets of performance requirements. One set of requirements pertains to
handling data requests from the site server, and another to handling command requests from the
IEN.

2.2.1 Data Access Requirements

The TCS CDI must be able to completely process a call to the DataAccessor interface’s
getDeviceEventDataList method within a half second.

order:

• system
• list
• CDI

The IEN requests configuration data on a different fraction (1/60th) of the TCS devices each
second. Consequently, it requests configuration data on all devices exported by the TCS once
per minute.

2.2.2 Data Reporting Requirements

When the Site Server queries a CDI for configured devices, it must return a list containing one or
more Event structures with data for the requested devices, as described in Section 2.4. Not all
traffic control systems can respond with the complete complement of data requested by the Site
Server. For examples, some systems poll controllers less frequently than once per second, while
others do not poll controllers unless specifically requested to do so by an operator. This section
describes which events the CDI must return when the Site Server requests them, and which the
CDI may omit.

Event types requested by the IEN fall in the following prioritized categories:

• Required – the CDI must always return events into this category when the Site
Server requests them.

• Required – (if a certain feature is supported) The CDI must return events in this
category when the Site Server requests them if the CDI supports the related feature
(system detectors and/or sections).

• Highly Desirable – The CDI should return events in this category to the Site Server
if possible, as they provide much of the utility of the IEN to users.

• Desirable – Desirable items returned by the CDI are helpful but not critical to the use
of the IEN.

Please note that it is highly desirable that the IEN receive data from the TCS CDI on a once-per-
second basis. However, the IEN will be capable of receiving data at whatever frequency the
TCS supports.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-12 May 19th, 2006

2.2.2.1 IEN_INTERSECTIONINFO

The CDI must always return a full IEN_INTERSECTIONINFO structure for an intersection
controller when the Site Server requests it.

2.2.2.2 IEN_INTERSECTIONRTSTATUS

The CDI must always return an IEN_INTERSECTIONRTSTATUS structure for an intersection
controller when the Site Server requests it. The CDI may set fields other than the cycle counter
and reference cycle counter to –1 if values are unknown.

2.2.2.3 IEN_INTERSECTIONRTSUMMARY

The CDI must always return this event when the Site Server requests it. The CDI must return its
best guess of the timing plan ID, controller alarms, controller response state, controller
communication state, and whether main street green is active or not at the time of the request. If
either the communication status values indicate a communication error to the controller, the IEN
will ignore the rest of the controller data until both fields indicate the CDI is communicating with
the controller.

It is highly desirable for the CDI to return usable data for the signal control mode, cycle length,
and desired and actual offset fields. The preemption type field is desirable, but may be set to
IPT_NO_PREEMPT if the controller’s preemption type is not known by the TCS at the time of
the request.

2.2.2.4 IEN_PHASE_STATEDATA

It is highly desirable for the CDI to return this event type when the Site Server requests it. If the
CDI returns this data, it should send an event to the IEN every time that it is requested. If no
phases have changed state since the previous request, the CDI should send the same data to the
Site Server as before.

This data is used to drive IEN displays that show which phases are active on a controller
(controller headers and phase arrows in intersection diagrams and phase times in intersection
detail displays).

2.2.2.5 IEN_PEDPHASE_STATEDATA

It is desirable for the CDI to return this event when the Site Server requests it. If the CDI returns
this data, it should send an event to the IEN every time that it is requested. If no pedestrian
displays have changed state since the previous request, the CDI should send the same data as
before.

The data in this event drives pedestrian walk/don’t walk symbols and pedestrian phase displays
in intersection header controls in intersection diagrams and the pedestrian phase displays in
intersection detail displays.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-13 May 19th, 2006

2.2.2.6 IEN_VEHCALL_STATEDATA

It is desirable for the CDI to return this event when the Site Server requests it. If the CDI returns
this data, it should send an event to the IEN every time it is requested. If no vehicle calls have
changed state since the previous request, the CDI should send the same data as before.

The data in this event drives actuation detector symbols and the vehicle call displays in the
intersection header control in intersection diagrams, and the vehicle call displays in intersection
detail displays.

2.2.2.7 IEN_LASTCYCLE_PHASEDATA

It is highly desirable that the CDI should return this event when requested by the Site Server.
The CDI should return this data at least once per cycle, preferably at the beginning of the
controller’s new cycle.

The data in this event drives the displays of the phase times in the last cycle shown in the
intersection header controls in intersection diagrams and in intersection detail displays.

2.2.2.8 IEN_TP_PHASEDATA

It is highly desirable that the CDI should return this event when requested by the Site Server.
The CDI should update this data when the controller changes the maximum green times allotted
to any of its phases, such as when it changes timing plans or phase timing parameters. The data
changes relatively rarely, generally when a user changes the controller’s global phase timing
parameters, although for some controllers phase maximum can change with timing plans.

The data in this event drives the displays of maximum phase times in the intersection header
controls in intersection diagrams and in intersection detail displays.

2.2.2.9 IEN_DETECTORINFO

If the CDI supports any system detectors, it must return this event when the Site Server requests
it. For systems that do not support a volume plus weighted occupancy calculation, 30 is a
reasonable default value for the weighting factor.

2.2.2.10 IEN_DETECTORSTATE

If the CDI supports any system detectors, it must return this event when the Site Server requests
it. The CDI should return new information in this event each time after the TCS uploads data
from a system detector.

2.2.2.11 IEN_SECTIONINFO

If the CDI supports sections, it must return this event when the Site Server requests it.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-14 May 19th, 2006

2.2.2.12 IEN_SECTIONSTATE

If the CDI supports sections, it must return this event when the Site Server requests it.

2.2.3 Command Execution Requirements

The TCS CDI must be able to process the following method calls to its CommandAccessor
interface within 10 seconds:

• setCDIPlan
• changeMode
• releaseControl

2.3 USAGE OF THE CORBA NAMING SERVICE

The TCS CDI must publish references to its objects in the connecting IEN Site Server’s CORBA
Naming Service. The IEN Site Server program uses the naming service to locate the TCS CDI
CORBA objects. In the event of a naming service failure, the CDI must periodically attempt to
rebind its objects to the naming service. The attempt interval should be 5 minutes or less.

2.3.1 IEN Naming Service Location

A TCS CDI implementation must publish its CommandAccessorFactory and
DataAccessorFactory objects to the naming service instance running on port 14444 on the Site
Server machine at the site where the TCS CDI is running. The IEN network design requires that
there be a Site Server at every site that runs a TCS CDI.

The CDI should set its name service reference to the equivalent of the following URI:

corbaloc:iiop:<site server name>:14444/NameService

The <site server name> string should be replaced by the network node name of the Site Server at
the IEN site where the TCS CDI runs.

2.3.2 Published Names

The TCS CDI must publish two (2) names to the naming service, one for its
CommandAccessorFactory object, and the second for its DataAccessorFactory object. Each
name should have one element, with the ID and KIND fields set to the strings shown in Table
2-2.

Table 2-2: CDI Names in the Naming Service

OBJECT ID KIND

CommandAccessorFactory TCSCDICmd<site ID> Site<site ID>

DataAccessorFactory TCSCDIData<site ID> Site<site ID>

The <site ID> string should be replaced with the ID number of the site at which the TCS CDI is
running.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-15 May 19th, 2006

2.4 TCS CDI EVENT FORMAT1

The TCS CDI must provide traffic control system event data to the Site Server program from its
DataAccessor interface in Event structures. These structures are defined in the IENRTData
module of the IENRTData.idl file. The IENRTData.IDL file is discussed within Section 2.1.1:
IENRTData.idl above and a listing is provided in Appendix A. The Site Server program then
relays this event data to user workstations at the local site and to the corridor server for
distribution to other sites.

Event structures have the format shown in Table 2-3. All enumeration types used in these events
are defined in the file sgv/src/common/tcscdi/src/IENDataDefine.hpp.

Table 2-3: Event Format

FIELD FORMAT CONTENT
EntityNumber 2-byte signed integer (short) Unique ID of the device to which the event data

applies

IenEventType 2-byte signed integer (short) Type of data that the event contains

Timestamp 4-byte signed integer (long) Event timestamp, in the format HHMMSS
(1:35:15 PM would be represented as 133515)

LongValues CORBA sequence (expandable
array) of 4-byte signed integers

Depends on the event type

ShortValues CORBA sequence of 2-byte signed
integers

Depends on the event type

OctetValues CORBA sequence of 1-byte signed
integers

Depends on the event type

StringValue CORBA string Depends on the event type

DoubleValue CORBA double floating point value Depends on the event type

2.4.1 Event Types

The file sgv/src/common/network/src/ientypedef.hpp contains the set of event types defined for
the IEN, as shown in Table 2-4. The event types are used in variables given the Code typedef in
the IDL files.

Table 2-4: IEN Event Types

EVENT TYPE ENTITY PRIORITY
IEN_COMMANDRETURN Command N/A

IEN_INTERSECTIONINFO Intersection Required

IEN_INTERSECTIONRTSTATUS Intersection Required

IEN_INTERSECTIONRTSUMMARY Intersection Required
Highly Desirable

IEN_PHASE_STATEDATA Intersection Highly Desirable

•
1 Unless otherwise specified, all tables listed in the sub-sections of 2.4 are used for descriptive purposes; actual
enumeration values are defined in the relevant header files.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-16 May 19th, 2006

EVENT TYPE ENTITY PRIORITY
IEN_PEDPHASE_STATEDATA Intersection Desirable

IEN_VEHCALL_STATEDATA Intersection Desirable

IEN_LASTCYCLE_PHASEDATA Intersection Highly Desirable

IEN_TP_PHASEDATA Intersection Highly Desirable

IEN_DETECTORINFO Detector Required (If Supported)

IEN_DETECTORSTATE Detector Required (If Supported)

IEN_SECTIONINFO Section Required (If Supported)

IEN_SECTIONSTATE Section Required (If Supported)

2.4.2 Command Events

2.4.2.1 IEN_COMMANDRETURN Event Type

This event type is not used.

2.4.3 Intersection Events

The following subsections show the format of event data for all intersection commands. They
show only the content of the fields of the Event structure that change. The header fields,
entityNumber and timeStamp, which do not change their value for the different types of events,
are omitted.

2.4.3.1 IEN_INTERSECTIONINFO Event Type

The TCS CDI should return the IEN_INTERSECTIONINFO event (as described in Table 2-5) to
the IEN Site Server when a new intersection controller is added to the TCS or any of the
configuration data for an intersection controller changes. The CDI should return this event with
the Intersection ID number of “-1” (please refer to Table 2-5 Field shortValues[0]) for an
intersection controller that has been removed from the TCS or does not exist in the TCS.

Table 2-5: Intersection Configuration Information

FIELD CONTENTS
eventType IEN_INTERSECTIONINFO

longValues None

shortValues[0] Intersection ID number, -1 if no intersection with the ID exists

shortValues[1] ID number of section containing this intersection, -1 if none

shortValues[2] Seconds between poll attempts to the intersection controller

OctetValues[0] Low byte of controller type string, as defined in Table 2-6

OctetValues[1] Next byte of controller type string

…

OctetValues[n] Last byte of controller type string, where n+1 is the length of the string. This should
not be a 0 byte

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-17 May 19th, 2006

FIELD CONTENTS
StringValue Description of the intersection controller. The description string should be of the form

“Main Street @ Cross Street”

doubleValue None

Currently defined controller type strings are listed in Table 2-6.

Table 2-6: IEN Controller Type Strings

CONTROLLER TYPE STRING
AB3418 Protocol

BI Tran

BI Tran 207LRT

BI Tran 222WP

BI Tran CIC

Central Plan Implementor

NTCIP Protocol

Series 2000 RCU

Series 2000 RCU LRT

Traconex TMP-390

Traconex TMP-390CJ

Traconex TMP-390M

Wapiti W4HC11

Wapiti W4IKS

Wapiti W4LRT

Wapiti W4LRT+

Wapiti W9FT

2.4.3.2 IEN_INTERSECTIONRTSTATUS Event Format

The CDI should return the IEN_INTERSECTIONRTSTATUS event (as described in

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-18 May 19th, 2006

Table 2-7) to the IEN Site Server for an intersection each second in which the Site Server
requests data for the intersection controller.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-19 May 19th, 2006

Table 2-7: Intersection Real-Time Status Data

FIELD CONTENTS
eventType IEN_INTERSECTIONRTSTATUS

longValues[0] # of communication attempts to the intersection controller (-1 if unknown)

longValues[1] # of good responses received from the intersection controller (-1 if unknown)

longValues[2] # of bad responses received from the intersection controller (-1 if unknown)

longValues[3] # of timeouts waiting for responses from the intersection controller (-1 if unknown)

shortValues[0] Cycle counter, seconds since start of cycle

shortValues[1] Time in seconds since reset of attempts counter (-1 if unknown or N/A)

shortValues[2] Time in seconds since reset of good responses counter (-1 if unknown or N/A)

shortValues[3] Time in seconds since reset of bad responses counter (-1 if unknown or N/A)

shortValues[4] Time in seconds since reset of timeout counter (-1 if unknown or N/A)

shortValues[5] Reference cycle counter for the intersection (cycle counter for controller with same
cycle length but offset 0)

octetValues None

stringValue None

doubleValue None

2.4.3.3 IEN_INTERSECTIONRTSUMMARY Event Format

The CDI should return the IEN_INTERSECTIONRTSUMMARY event (as described in Table
2-8) to the IEN Site Server whenever any of the data listed in the table changes for a given
intersection controller.

Table 2-8: Intersection Real-Time Summary Data

FIELD CONTENTS
EventType IEN_INTERSECTIONRTSUMMARY

longValues[0] Signal control mode (see Table 2-9)

longValues[1] Intersection signal state (see Table 2-10)

longValues[2] Controller response state: ICR_RESPONDING if controller responding to
communication, ICR_NOT_RESPONDING if not

longValues[3] Preemption type, defined in Table 2-11

longValues[4] Controller alarms, a set of 0 or more bit masks fromTable 2-12. Multiple bit flags may
be bitwise OR’ed together.

longValues[5] Main street green active. 1 if the main street green phase is presently active, 0 if not, -1
if unknown.

longValues[6] Communication state for the intersection controller, as shown in Table 2-13

longValues[7] Timing plan ID number

longValues[8] Desired cycle length, in seconds

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-20 May 19th, 2006

FIELD CONTENTS
longValues[9] Desired offset, in seconds

longValues[10] Actual offset, in seconds

ShortValues None

OctetValues None

StringValue None

DoubleValue None

Legal control modes for intersection controllers and sections follow in Table 2-9. They are
drawn from the file sgv/src/common/tcscdi/src/IENDataDefine.hpp..

Table 2-9: Intersection Control Modes

CONTROL MODE EXPLANATION
ISC_OTHER_NO_ADDITIONAL Control mode other than the defined values

ISC_OTHER_ADDITIONAL Unknown coordination mode, more information
available

ISC_FREE Free timing

ISC_FIXED_TIME Controller is running fixed-time plan

ISC_TIME_BASE_COORDINATION Controller is running a coordinated plan

ISC_ACTUATED Controller is fully actuated

ISC_SEMI_ACTUATED Controller is semi-actuated

ISC_CRITICAL_INTERSECTION_CONTROL Controller is adjusting split times in its plan based on
detector data

ISC_TRAFFIC_RESPONSIVE Controller timing plan selected based on detector data
(traffic responsive)

ISC_ADAPTIVE Controller timing plan, cycle length, offset, and split
times based on detector data (adaptive)

ISC_TRANSITION Controller is in transition between timing plans

ISC_EXTERNAL Intersection timing plan requested by external user

The valid signal states for intersection controllers are described in Table 2-10. The values are
defined in the file sgv/src/common/tcscdi/src/IENDataDefine.hpp.

Table 2-10: Intersection Signal States

SIGNAL STATE EXPLANATION
ISS_OTHER_NO_ADDITIONAL Signal state other than the defined values

ISS_OTHER_ADDITIONAL Signal state other than the defined values,
more information available

ISS_NORMAL_OPERATION Signal in normal operation state

ISS_FLASH Signal in flashing operation state

ISS_PREEMPTION Signal in preemption operation state

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-21 May 19th, 2006

SIGNAL STATE EXPLANATION
ISS_CONFLICT_FLASH Signal in conflict flashing state

Legal preemption types for intersection controllers follow in Table 2-11, also drawn from the file
sgv/src/common/tcscdi/src/IENDataDefine.hpp.

Table 2-11: Intersection Preemption Types

PREEMPTION TYPE EXPLANATION
IPT_OTHER_NO_ADDITIONAL Preemption type other than the defined values

IPT_OTHER_ADDITIONAL Preemption type other than the defined values,
more information available

IPT_NO_PREEMPT No preemption presently active

IPT_GENERAL_PREEMPT General preemption active

IPT_BRIDGE_PREEMPT Bridge preemption active

IPT_EV_PREEMPT Emergency vehicle preemption active

IPT_LRT_PREEMPT Light rail transit preemption active

IPT_RR_PREEMPT Railroad preemption active

Table 2-12 defines the alarm bit flags defined for intersection controllers.

Table 2-12: Intersection Controller Alarm Bit Flags

CONTROLLER ALARM BIT FLAG EXPLANATION
ICA_NO_ALARM No alarms currently defined

ICA_CONFLICT_FLASH_ALARM The controller is in flash because of a conflict

ICA_CABINET_DOOR_OPEN_ALARM The controller’s cabinet door is open

ICA_TRANSITION_ALARM The controller is in transition

ICA_INTERNAL_ERROR_ALARM The controller has detected an internal error

ICA_FLASH_ALARM The controller is in flash for a reason other than a conflict

Table 2-13 defines the possible communication state values for an intersection controller.

Table 2-13: Intersection Controller Communication States

CONTROLLER COMMUNICATION
STATE EXPLANATION

ICS_COMM_UNKNOWN State of communication to the controller cannot be presently
determined

ICS_COMM_OTHER Unspecified other communication state

ICS_COMM_GOOD The TCS is presently communicating properly with the
controller

ICS_COMM_BAD The TCS has determined there is a problem communicating
with the controller

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-22 May 19th, 2006

2.4.3.4 IEN_PHASE_STATEDATA Event Type

The CDI should return the IEN_PHASE_STATEDATA event (as described in Table 2-14) to the
IEN Site Server when the state of any of the defined phases for an intersection controller
changes. This event should contain the IDs of phases that are currently green. It should not
contain the IDs of phases that are red, yellow, or inactive in the current timing pattern.

Table 2-14: Intersection Controller Phase State Data

FIELD CONTENTS
EventType IEN_PHASE_STATEDATA
LongValues None
ShortValues None
octetValues[0] Active phase ID 1 (If there is no phase in active state, the length of octetValues

sequence should be set to 1 and the value in this field set to “0”)
octetValues[1] Active phase ID 2
octetValues[2] Active phase ID 3
…
octetValues[n - 1] Active phase ID n
StringValue None
DoubleValue None

2.4.3.5 IEN_PEDPHASE_STATEDATA Event Type

The CDI should return the IEN_PEDPHASE_STATEDATA event (as described in Table 2-15)
to the IEN Site Server when the walk signal state changes for any defined phase in the
intersection controller. This event should contain the IDs of phases that are currently displaying
walk signals. It should not contain the IDs of phases that are not showing walk signals or that
are inactive.

Table 2-15: Intersection Pedestrian Signal States

FIELD CONTENTS
eventType IEN_PEDPHASE_STATEDATA

longValues None

shortValues None

octetValues[0] Active pedestrian phase ID 1 (If there is no pedestrian phase in active state, the
length of octetValues sequence should be set to 1 and the value in this field set to
“0”)

octetValues[1] Active pedestrian phase ID 2

octetValues[2] Active pedestrian phase ID 3

…

octetValues[n - 1] Active pedestrian phase ID n

stringValue None

doubleValue None

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-23 May 19th, 2006

2.4.3.6 IEN_VEHCALL_STATEDATA Event Type

The CDI should return the IEN_VEHCALL_STATEDATA event (as described in Table 2-16) to
the IEN Site Server when any of the actuation detectors associated with a controller changes its
actuation state. This event should contain only the IDs of phases that have active actuation
detectors.

Table 2-16: Intersection Actuation Detector States

FIELD CONTENTS
eventType IEN_VEHCALL_STATEDATA

longValues None

shortValues None

octetValues[0] Active phase ID 1 (If there is no phase in active state, the length of octetValues
sequence should be set to 1 and the value in this field set to “0”)

octetValues[1] Active phase ID 2

octetValues[2] Active phase ID 3

…

octetValues[n - 1] Active phase ID n

stringValue None

doubleValue None

2.4.3.7 IEN_LASTCYCLE_PHASEDATA Event Type

The CDI should return the IEN_LASTCYCLE_PHASEDATA event (as described in Table
2-17) to the IEN Site Server at the end of an intersection controller’s cycle. It should contain the
total green time for all phases that were active in the controller during the just-completed cycle.

Table 2-17: Phase Data for Previous Intersection Cycle

FIELD CONTENTS
eventType IEN_LASTCYCLE_PHASEDATA

longValues[0] Total phase time for all phases in last cycle

longValues[1] Phase ID 1

longValues[2] Green time in seconds for phase ID 1 in the controller’s last cycle

longValues[3] Phase ID 2

LongValues[4] Green time in seconds for phase ID 2 in the controller’s last cycle

…

longValues[2n-1] Phase ID n (where n is the highest ID of any phase active in the controller in the last
cycle)

longValues[2n] Green time in seconds for phase ID n in the controller’s last cycle

shortValues None

octetValues None

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-24 May 19th, 2006

FIELD CONTENTS
stringValue None

doubleValue None

2.4.3.8 IEN_TP_PHASEDATA Event Type

The CDI should return the IEN_TP_PHASEDATA event (as described in Table 2-18) to the IEN
Site Server when the maximum permissible green time changes for any of the phases defined in
the controller.

Table 2-18: Controller Phase Maximum Data

FIELD CONTENTS
EventType IEN_TP_PHASEDATA

LongValues None

shortValues None

OctetValues[0] Phase ID 1

OctetValues[1] Maximum time in seconds for phase ID 1

…

OctetValues[2n - 2] Phase ID n (where n is the largest ID of a phase defined in the controller’s current
timing parameters)

OctetValues[2n - 1] Maximum time in seconds for phase n

StringValue None

doubleValue None

2.4.4 Detector Events

2.4.4.1 IEN_DETECTORINFO Event Type

CDI should return the IEN_DETECTORINFO event (as described inTable 2-19) to the IEN Site
Server for a detector if a detector is created or any of the detector’s configuration data changes.
It should send the value of “-1” in field shortValues[0] if the requested detector is deleted from
the TCS or does not exist in the TCS.

Table 2-19: Detector Configuration Information

FIELD CONTENTS
EventType IEN_DETECTORINFO

longValues[0] Detector data averaging period, in seconds

ShortValues[0] Detector ID, should set to the same value as Event.entityNumber when the requested
detector exists, or “-1” when the detector does not exist in the TCS

octetValues[0] Detector class. Should always be DC_SYSTEM, as shown in Table 2-20.

octetValues[1] Detector type, from Table 2-21

octetValues[2] Direction of traffic flow over the detector, as shown in Table 2-22

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-25 May 19th, 2006

FIELD CONTENTS
octetValues[3] Lane number for traffic passing over the detector. The innermost lane on the

roadway is lane 1, the next lane to the right is lane 2, etc.

stringValue Name of the roadway that contains the detector

doubleValue Weighting factor (K) for volume + weighted occupancy calculations

Detector classes are defined in the file sgv/src/common/idl/IENTCSData.idl. They are shown
here in Table 2-20.

Table 2-20: IEN Detector Classes

DETECTOR CLASS EXPLANATION
DC_OTHER_NO_ADDITIONAL Other class with no additional information

DC_OTHER_ADDITIONAL Other class with additional information (not presently supported)

DC_STOP_BAR Intersection stop bar detector

DC_SYSTEM Arterial traffic detector

DC_PEDESTRIAN Arterial pedestrian detector

DC_ADAPTIVE Arterial traffic detector used for adaptive control

DC_CALL Arterial vehicle call (actuation) detector

DC_EXTENSION Arterial extension detector

DC_MAINLINE Mainline freeway detector

DC_REVERSIBLE_LANE Reversible lane detector

DC_RAMP_DEMAND Freeway ramp demand detector

DC_RAMP_MERGE Freeway ramp merge detector

DC_RAMP_PASSAGE Freeway ramp passage detector

DC_RAMP_QUEUE Freeway ramp queue detector

Detector types (as described in Table 2-20) mean the mechanism that the detector uses to detect
vehicles. They are defined in the file sgv/src/common/idl/IENTCSData.idl.

Table 2-21: IEN Detector Types

DETECTOR TYPE EXPLANATION
DT_OTHER_NO_ADDITIONAL Other detection mechanism, no additional information on what

DT_OTHER_ADDITIONAL Other detection mechanism with additional explanatory information
(not presently supported)

DT_INDUCTIVE_LOOP Inductive loops

DT_MAGNETIC Magnetic detection

DT_MAGNETOMETERS Detection by magnetometers

DT_PRESSURE_CELLS Detection by pressure cells

DT_MICROWAVE_RADAR Detection by microwave radar

DT_ULTRASONIC Detection using ultrasound

DT_VIDEO_IMAGE Detection using video images

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-26 May 19th, 2006

DETECTOR TYPE EXPLANATION
DT_LASER Detection using laser ranging

DT_INFRARED Detection using infrared light

DT_ROAD_TUBE Detection using a road tube

The detector direction codes should carry the values and meanings described in Table 2-22..

Table 2-22: IEN Detector Direction Codes

CODE VALUE CODE MEANING
0 Eastbound

1 Westbound

2 Southbound

3 Northbound

4 Southeast bound

5 Southwest bound

6 Northeast bound

7 Northwest bound

8 Outbound

9 Inbound

10 None

2.4.4.2 IEN_DETECTORSTATE Event Type

The IEN should return the IEN_DETECTORSTATE event (as described in Table 2-23) to the
IEN Site Server for each detector immediately after new data has been uploaded from the field
into the TCS for that detector.

Table 2-23: Detector Status Information

FIELD CONTENTS
eventType IEN_DETECTORSTATE

longValues None

longValues[0] Volume from yhr most recent upload, in units of vehicles per hour

longValues[1] Average volume, in units of vehicles per hour. Averaging period given in
IEN_DETECTORINFO event.

longValues[2] Volume in vehicles per hour + weighted occupancy, for volume and occupancy from
the most recent upload. The weighting factor used is the weighting factor reported in
the IEN_DETECTORINFO event.

longValues[3] Average volume in vehicles per hour + weighted occupancy, for volume and
occupancy in the averaging period. The averaging period and weighting factor used
are reported in the IEN_DETECTORINFO event.

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-27 May 19th, 2006

FIELD CONTENTS
shortValues[0] Detector status, from Table 2-24

shortValues[1] Speed data from the most recent upload, in miles per hour

shortValues[2] Average speed data over the averaging period, in miles per hour. Averaging period
comes from the IEN_DETECTORINFO event.

shortValues[3] Occupancy data from the most recent upload, in percent (0-100)

shortValues[4] Average occupancy data for the detector, in percent (0-100). The averaging period is
reported in the IEN_DETECTORINFO event.

stringValue None

doubleValue None

The detector status codes (as described in) are defined in the file
sgv/src/common/tcscdi/src/IENDataDefine.hpp. Table 2-24.

Table 2-24: IEN Detector Status Codes

DETECTOR STATUS CODE EXPLANATION
DS_OTHER_NO_ADDITIONAL Other undefined status, with no additional information

DS_OTHER_ADDITIONAL Other undefined status, with additional explanatory information
(not supported)

DS_FAILED Detector has failed and the TCS cannot read data from it

DS_OPERATIONAL Detector is operational

DS_OFF Detector is offline and not reporting data

2.4.5 Section Events

2.4.5.1 IEN_SECTIONINFO Event Type

The CDI should return the IEN SECTIONINFO event (as described in Table 2-25) if a section is
created or any of the member intersections are added to or removed from the section. It should
send the value of “-1” in field shortValues[0]if the requested section is deleted from the TCS or
does not exist in the TCS.

Table 2-25: Section Configuration Information

FIELD CONTENTS
eventType IEN_SECTIONINFO

longValues[0] ID of the first intersection in the section

longValues[1] ID of the next intersection in the section

…

longValues[n] ID of the last intersection in the section

ShortValues[0] Section ID, should set to the same value as Event.entityNumber when the requested
section exists, or “-1” when the section does not exist in the TCS

octetValues None

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-28 May 19th, 2006

FIELD CONTENTS
stringValue None

doubleValue None

2.4.5.2 IEN_SECTIONSTATE Event Type

The Site Server should return the IEN_SECTIONSTATE event (as described in Table 2-26) to
the IEN Site Server when any of the sections defined in the TCS changes its control mode or
section timing plan number.

Table 2-26: Section State Data

FIELD CONTENTS
eventType IEN_SECTIONSTATE

longValues None

shortValues[0] Section control mode, from Table 2-27

shortValues[1] ID number of timing plan currently set for intersections contained by the section

octetValues None

stringValue None

doubleValue None

The IEN section signal control modes (listed below in Table 2-27) are defined in the file
sgv/src/common/tcscdi/src/IENDataDefine.hpp.

Table 2-27: IEN Section Control Modes

SECTION SIGNAL CONTROL MODE EXPLANATION
SSC_OTHER_NO_ADDITIONAL Other undefined section control mode, with no

additional information

SSC_OTHER_ADDITIONAL Other undefined section control mode, with
additional explanatory information (not supported)

SSC_FREE Intersections in the section should run free

SSC_FIXED_TIME Intersections in the section should run fixed time
timing plans

SSC_TIME_BASE_COORDINATION Intersections in the section should run coordinated
timing plan

SSC_ACTUATED Intersections in the section should run fully actuated

SSC_SEMI_ACTUATED Intersections in the section should run semi-
actuated

SSC_CRITICAL_INTERSECTION_CONTROL Intersections in the section should change the split
times in their timing plans based on detector data

SSC_TRAFFIC_RESPONSIVE Intersections in the section should choose their
timing plans based on detector data

SSC_ADAPTIVE Intersections in the section should define their cycle
length, offset, and split times based on detector

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 2-29 May 19th, 2006

SECTION SIGNAL CONTROL MODE EXPLANATION
data

SSC_TRANSITION Not used

SSC_EXTERNAL Intersections in the section should follow external
requests to choose timing plans

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 3-1 May 19th, 2006

3. EXAMPLE IMPLEMENTATION: SERIES 2000 TCS CDI

This section presents the Series 2000 TCS CDI as an example TCS CDI implementation. TCS
CDI implementations for other traffic control systems may vary, but they must comply with the
TCS CDI interface requirements that were described above.

3.1 CORBA ORBS USED

The IEN Site Server process runs on Microsoft Windows on an Intel Pentium. It uses the TAO
ORB, which is freely available at http://www.cs.wustl.edu/~schmidt/corba.html.

The Series 2000 TCS CDI runs on Open-VMS on the HP Alpha Platform. It uses omniORB,
because TAO has not been ported to Open-VMS. The version of omniORB that was used
implements version 2.2 of the CORBA Specification. The omniORB ORB is also freely
available at http://omniorb.sourceforge.net/.

3.2 IMPLEMENTATION ENVIRONMENT

TransCore wrote the Series 2000 TCS CDI in the C++ programming language. It contains
conditional compilation to build the actual TCS CDI or a CDI simulator.

3.3 CONFIGURATION DATA

The Series 2000 TCS CDI program reads configuration data from a disk file using a CfgFile
object. The configuration file contains corridor, site, and system ID data to identify the TCS
CDI on the network, and a list of the intersection controllers, system detectors, and sections that
the CDI will export to the IEN. A listing of the file is included in Appendix B: Series 2000 TCS
CDI Configuration File.

3.4 SERIES 2000 TCS CDI MAIN ROUTINE

This section describes the main routine for the Series 2000 TCS CDI. The CDI runs as a single
process on the Series 2000 server computer. The code itself can be found in the file
sgv/src/common/tcscdi/src/s2kiencdi.cpp.

The initial section of the code gets the site ID and configuration file name from the command
line.

int main(int argc, char **argv)

{

 const char * pRoutineName = "S2KIENCDI::Main : ";

 // Check configuration file

 vector<string> optvals;

http://www.cs.wustl.edu/%7Eschmidt/corba.html
http://omniorb.sourceforge.net/

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 3-2 May 19th, 2006

 TcOptParser opt(argc, argv);

 string cfgFile = opt.getOpt("config", optvals) ?

 *(optvals.begin()) : "TCSData.cfg" ;

#ifdef DEBUG_PRINT

 cout << pRoutineName << "Read from configuration file: " << cfgFile;

 cout << endl << flush;

#endif

 // Setup site id

 long siteid = 0;

 string retval = opt.getOpt("siteid", optvals) ? *(optvals.begin()) : "0" ;

 siteid = atoi(retval.c_str());

#ifdef DEBUG_PRINT

 cout << pRoutineName << "System linked to site " << siteid << endl;

#endif

The next section of code initializes the ORB object.
 try
 {
 CORBA::Object_var obj;

 // Initialize ORB
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv, "omniORB3");

 if (CORBA::is_nil(orb))
 {
 cerr << "can't initiate ORB" << endl;
 return -1;
 }

#ifdef DEBUG_PRINT
 cout << pRoutineName << "ORB initialized" << endl << flush;
#endif

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 3-3 May 19th, 2006

The following section of code initializes the Portable Object Adapter that manages the CORBA
server objects that the TCS CDI creates.

 // Get root POA
 obj = orb->resolve_initial_references("RootPOA");

 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

 if (CORBA::is_nil(poa))
 {
 cerr << pRoutineName << "Can't resolve RootPOA" << endl;

 return -1;
 }

#ifdef DEBUG_PRINT
 cout << pRoutineName << "Root POA resolved" << endl << flush;
#endif

 // Activate the POA
 PortableServer::POAManager_var poaManager = poa->the_POAManager();
 poaManager->activate();

#ifdef DEBUG_PRINT
 cout << pRoutineName << "Root POA activated" << endl << flush;
#endif

The following code obtains a reference to the CORBA naming service.
 // Get naming service
 obj = orb->resolve_initial_references("NameService");

 CosNaming::NamingContext_var ncRef =
 CosNaming::NamingContext::_narrow(obj);
 if (CORBA::is_nil(ncRef))
 {
 cerr << pRoutineName << "Can't resolve root naming context"<<endl;

 return -1;
 }

#ifdef DEBUG_PRINT
 cout << pRoutineName << "Root naming context resolved" << endl << flush;
#endif

The following code creates the CDI’s instance of the TCSDataAF and TCSCommandAF. The
Site Server uses these objects to get TcsDataAccessor and TcsCommandAccessor objects,
respectively, for accessing TCS data and sending commands to it.

 // Init TCSDataAF servant
 TCSDataAF* daf_i = new TCSDataAF(cfgFile);

 TCSData::DataAccessorFactory_var data_servant = daf_i->_this();

 //init TCSCommandAF servant
 TCSCommandAF* caf_i = new TCSCommandAF(cfgFile);

 TCSCommand::CommandAccessorFactory_var cmd_servant = caf_i->_this();

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 3-4 May 19th, 2006

The program then publishes a reference to the TCSDataAF object in the naming service. See
Section 2.3: Usage of the CORBA Naming Service, above for more information on how the
names should be published.
 // Publish Name with CORBA Naming Service
 char id[20];
 char kind[20];

 CosNaming::Name name;

 sprintf(id, "TCSCDIData%d", siteid);
 sprintf(kind, "Site%d", siteid);

 name.length(1);
 name[0].id = CORBA::string_dup(id);
 name[0].kind = CORBA::string_dup(kind);

 ncRef->rebind(name, data_servant);

#ifdef DEBUG_PRINT
 cout << pRoutineName << "TCSCDI Data Accessor published name: "
 << id << "/" << kind << endl << flush;
#endif

The program publishes a reference to the TCSCommandAF object in the naming service.
 sprintf(id, "TCSCDICmd%d", siteid);
 sprintf(kind, "Site%d", siteid);

 name.length(1);
 name[0].id = CORBA::string_dup(id);
 name[0].kind = CORBA::string_dup(kind);

 ncRef->rebind(name, cmd_servant);

#ifdef DEBUG_PRINT
 cout << pRoutineName << "TCSCDI Cmnd Accessor published name: "
 << id << "/" << kind << endl << flush;
#endif

The program then enters the ORB’s run loop and stays there indefinitely. In this loop, it will
respond to CORBA method invocations from other systems or processes. This implementation
is driven only by CORBA method invocations, and does not do background processing using
other threads.
 // Enter the ORB event loop
 orb->run();

The catch clauses and other code handle exceptions thrown by the CORBA ORB code. The
program will not execute any of this code in normal conditions.
 CORBA::release(orb);

 } catch(const CORBA::SystemException& se)
 {
 cerr << pRoutineName << "Main() caught CORBA::SystemException: ";
 cerr << se << endl;

 return -1;
 }

 catch(const CORBA::Exception& e)

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 3-5 May 19th, 2006

 {
 cerr << pRoutineName << "Main() caught CORBA::Exception: ";
 cerr << e << endl;

 return -2;
 }

#ifdef DEBUG_PRINT
 cout << pRoutineName << "S2kcdi server shutdown" << endl;
#endif

 return 0;

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-1 May 19th, 2006

4. APPENDICES

4.1 APPENDIX A: TCS CDI CORBA IDL FILES

4.1.1 IENRTData.idl
//---
// Copyright 2001 County of Los Angeles. All Rights Reserved.
//
// Developed by TransCore
//---
// $Id: IENRTData.idl,v 1.16 2004/04/20 18:48:15 build Exp $
//
// CORBA type definitions for IEN Real-time Data Distribution subsystem.
//---

#ifndef IENRTDATA_IDL
#define IENRTDATA_IDL

#pragma prefix "transcore.com"
module IENRTData
{
 const string IDLFileID = "$Id: IENRTData.idl,v 1.16 2004/04/20 18:48:15
build Exp $";

 struct Event
 {
 short entityNumber; // entity number (unique to system
and event type)
 short ienEventType; // type of event (see above)
 long timeStamp; // in the format HHMMSS
 sequence<long> longValues; // sequence of 32-bit values
 sequence<short> shortValues; // sequence of 16-bit values
 sequence<octet> octetValues; // sequence of bytes
 string stringValue;
 double doubleValue;
 };
 typedef sequence<Event> EventSeq;

 // Event group, consisting of a sequence of events and the identity
 // of the generating system.
 struct EventGroup
 {
 short corridor;// id for corridor generating this events
 short site; // id for site generating this events
 short system; // id for system generating this events
 short sites; // bit map of sites that request these data
 EventSeq events; // event data
 };
 typedef sequence<EventGroup> EventGroupSeq;

 // smm/TransCore/atl 2/04 - Added next group of Device Type definitions
 // so as to have all defice types defined in a
 // central location.

 // IEN System wide device types (Note: When changing number of

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-2 May 19th, 2006

 // items in this list, modify value of DT_COUNT to reflect
 // correct number)
 enum DeviceType
 {
 DT_SYSTEM,
 DT_SCHEDULE,
 DT_INTERSECTION,
 DT_SECTION,
 DT_DETECTOR,
 DT_SIGN,
 DT_CAMERA,
 DT_HAR
 };

 // Constant used to indicate number of type we have defined
 const short DT_COUNT = 8;

};

#endif

//---
// Copyright 2001 County of Los Angeles. All Rights Reserved.
//---

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-3 May 19th, 2006

4.1.2 TCS.idl
//---
// Copyright 2001 County of Los Angeles. All Rights Reserved.
//
// Developed by TransCore
// --
// $Id: tcs.idl,v 1.15 2004/04/20 18:48:15 build Exp $
//
// Basic definitions for CORBA interface to Generic TCS
// --

#ifndef TCS_IDL
#define TCS_IDL

#pragma prefix "transcore.com"

#include "IENRTData.idl"

module TCS
{
 typedef sequence<IENRTData::DeviceType> DeviceTypeList;

 /// Modes of operation
 enum Mode
 {
 NORMAL,
 LOCAL_TOD,
 FREE,
 TOD,
 RESPONSIVE,
 MANUAL,
 RELEASE
 };

 /// Functions that can be activated or deactivated on
 /// a per-device basis
 enum SpecialFunction
 {
 FLASH,
 SPECIAL_FUNCTION_1,
 SPECIAL_FUNCTION_2,
 SPECIAL_FUNCTION_3,
 SPECIAL_FUNCTION_4
 };

 /// Device identifier number
 typedef short DeviceID;

 /// Unique identifier for a device in a given TCS
 struct Device
 {
 IENRTData::DeviceType type;
 DeviceID id;
 };

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-4 May 19th, 2006

 /// List of Device elements
 typedef sequence<Device> DeviceList;

 /// This exception is thrown when something goes wrong that
 /// is not covered by a more specific exception
 exception Error
 {
 string reason;
 };

 /// Thrown by methods if devices are specified that
 /// are unknown to TCS or not fully configured
 exception UnknownDevices
 {
 DeviceList unknowns;
 };

 /// Version number (major.minor.revision)
 struct Version
 {
 short major;
 short minor;
 short revision;
 };

 /// System status codes
 enum Status
 {
 /// Running normally
 SYSTEM_NORMAL,

 /// Initializing; features may be unavailable or uninitialized
 SYSTEM_STARTING,

 /// Shutting down; features may be unavailable or no longer updated
 SYSTEM_STOPPING,

 /// TCS is not running
 SYSTEM_SHUTDOWN,

 /// TCS *is unable to run
 SYSTEM_ERROR
 };

 /// This exception is thrown when a client attempts an operation while
 /// TCS is in a state that does not allow it.
 exception SystemStatusException
 {
 Status systemStatus;
 };

 /// Interface that provides client with means to discover what
 /// devices are available from the TCS, and other
 /// high-level aspects of the system.
 interface ConfigurationAccessor
 {
 /// @return Version number for TCS CORBA interface

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-5 May 19th, 2006

 readonly attribute Version interfaceVersion;

 /// @return Version of TCS software
 readonly attribute Version systemVersion;

 /// @return Name of TCS system
 readonly attribute string systemName;

 /// @return Current status of TCS
 readonly attribute Status systemStatus;

 /// @return list of configured devices of the given types
 DeviceList getAvailableDevices(in DeviceTypeList types);
 };
};

#endif

//---
// Copyright 2001, 2004 County of Los Angeles. All Rights Reserved.
//---

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-6 May 19th, 2006

4.1.3 TCSData.idl
// --
// Copyright 2001, 2004 County of Los Angeles. All Rights Reserved.
//
// Developed by TransCore
// --
// $Id: tcsdata.idl,v 1.14 2004/05/04 15:42:12 build Exp $
//
// CORBA interface to TCS data.
// --

#ifndef TCSDATA_IDL
#define TCSDATA_IDL

#include "TCS.idl"

#pragma prefix "transcore.com"

module TCSData
{
 /// Major version, minor version, and revision of this IDL interface
 const short majorVersion = 2;
 const short minorVersion = 0;
 const short revision = 1;

 /// Item codes are not defined in IDL; they are
 /// documented elsewhere
 typedef short Code;

 /// List of data item code elements
 typedef sequence<Code> CodeList;

 /// Data types returned for a given device type

 struct DeviceDataTypes
 {
 IENRTData::DeviceType type;
 CodeList dataTypes;
 };

 /// List of data types for all supported devices.
 typedef sequence<DeviceDataTypes> DeviceDataTypeList;

 /// A device ID followed by a list of data codes supported by the
 /// device, and a flag to indicate if the CDI should retrieve all
 /// data for the device or only changed data.

 struct DeviceCode
 {
 TCS::Device device;
 CodeList dataCodes;
 boolean changedOnly;
 };

 /// List of DeviceCode elements
 typedef sequence<DeviceCode> DeviceCodeList;

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-7 May 19th, 2006

 /// Interface for retrieving data from TCS
 interface DataAccessor: TCS::ConfigurationAccessor
 {
 /// Instance name passed to DataAccessorFactory's
 /// CreateDataAccessor() method to create this instance.
 readonly attribute string clientName;

 /// Client calls this method when finished with this
 /// DataAccessor. Releases all resources associated with this
 /// instance.
 void destroy();

 /// @return the configured device list for this instance.
 TCS::DeviceList getDeviceList();

 /// Get the data type codes supported for all device types
 /// for which this CDI returns data.
 /// @return supported data types for all supported devices
 DeviceDataTypeList deviceDataTypes();

 /// @return Data items for input device list.
 ///
 /// @param devices List of devices for which to get data. Each
 /// entry in the list has a device ID, requested
 /// data types, and a changeOnly flag indicating
 /// if the method should retrieve only changed
 /// data (if true), or all known data (if false).
 /// @return Sequence of IEN events containing requested
 /// requested data
 /// @throws SystemStatusException if system not currently
 /// running
 /// @throws Error if a device ID or data type in the
 /// device list is not supported.
 IENRTData::EventSeq getDeviceEventDataList(
 in DeviceCodeList devices)
 raises (TCS::SystemStatusException,
 TCS::Error);
 };

 /// Interface for creating instances of DataAccessor
 interface DataAccessorFactory
 {
 /// Create an instance of DataAccessor.
 ///
 /// @param clientName Text identifying the user
 /// of this interface. For
 /// informational and diagnostic
 /// purposes only.
 ///
 /// @param option Provides access to special
 /// functionality (generally for
 /// debugging or testing purposes).
 /// Always pass 0 unless you know
 /// what you're doing.
 /// @throws Error If the client name is empty or the

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-8 May 19th, 2006

 /// option is not supported

 DataAccessor createDataAccessor(in string clientName,
 in long option)
 raises (TCS::Error);
 };
};

#endif

//---
// Copyright 2001, 2004 County of Los Angeles. All Rights Reserved.
//---

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-9 May 19th, 2006

4.1.4 TCSCommand.idl
//---
// Copyright 2001 County of Los Angeles. All Rights Reserved.
//
// Developed by TransCore
// --
// $Id: tcscommand.idl,v 1.15 2004/04/20 18:48:15 build Exp $
//
// CORBA interface to TCS commands.
// --

#ifndef TCSCOMMAND_IDL
#define TCSCOMMAND_IDL

#include "tcs.idl"

#pragma prefix "transcore.com"
module TCSCommand
{
 /// Major version, minor version, and revision of this IDL interface
 const short majorVersion = 2;
 const short minorVersion = 0;
 const short revision = 1;

 // Thrown when a request is made to activate/deactivate
 // a special function that is not supported by one or
 // more of the devices specified in the request.
 exception UnsuppportedSpecialFunction
 {
 TCS::SpecialFunction function;
 TCS::DeviceList devices;
 };

 /// Thrown when a plan number is specified that is not
 /// supported by one or more of the devices in the
 /// command.
 exception InvalidPlanNumber
 {
 short planNumber;
 TCS::DeviceList devices;
 };

 /// Thrown when a mode is specified that is not supported
 /// by one or more of the devices in the request.
 exception InvalidMode
 {
 TCS::Mode invMode;
 TCS::DeviceList devices;
 };

 /// Thrown when a special function is not supported
 /// by one or more of the devices in the request.
 exception UnsupportedSpecialFunction
 {
 TCS::SpecialFunction function;
 TCS::DeviceList devices;

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-10 May 19th, 2006

 };

 /// Thrown when the TCS interface is not accepting commands
 /// (because it has been manually disabled)
 exception CommandsNotAccepted
 {
 string reason;
 };

 /// Interface that allows clients to send commands to TCS
 interface CommandAccessor: TCS::ConfigurationAccessor
 {
 /// Text passed to DataAccessorFactory::CreateDataAccessor()
 /// to create this instance.
 readonly attribute string clientName;

 /// Client calls this method when finished with this CommandAcceptor.
 /// Releases all resources associated with this instance.
 void destroy();

 /// Change CDI plan number
 ///
 /// @param devices List of devices for which to change the plan
 /// @param planNumber New plan number for the requested devices
 void setCDIPlan(
 in TCS::DeviceList devices,
 in short planNumber
) raises (
 CommandsNotAccepted,
 InvalidPlanNumber,
 TCS::UnknownDevices,
 TCS::SystemStatusException,
 TCS::Error
);

 /// Change operational mode of specified devices.
 ///
 /// @param devices List of devices for which to change the mode
 /// @param newMode New operational mode for the devices on the
list
 void changeMode(
 in TCS::DeviceList devices,
 in TCS::Mode newMode
) raises (
 CommandsNotAccepted,
 InvalidMode,
 TCS::UnknownDevices,
 TCS::SystemStatusException,
 TCS::Error
);

 /// Release IEN control of a list of TCS devices
 ///
 /// @param devices List of devices for which to release IEN
control
 void releaseControl(
 in TCS::DeviceList devices
) raises (

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-11 May 19th, 2006

 TCS::UnknownDevices,
 TCS::SystemStatusException,
 TCS::Error
);

 };

 /// Interface for creating instances of CommandAcceptor
 interface CommandAccessorFactory
 {
 /// Create an instance of DataAccessor.
 ///
 /// @param clientName Text identifying the user
 /// of this interface. For
 /// informational and diagnostic
 /// purposes.
 ///
 /// @param option Provides access to special
 /// functionality (generally for
 /// debugging or testing purposes).
 /// Always pass 0 unless you know
 /// what you're doing.
 CommandAccessor createCommandAccessor(
 in string clientName,
 in long option
) raises (TCS::Error);
 };
};

#endif
//---
// Copyright 2001, 2004 County of Los Angeles. All Rights Reserved.
//---

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-12 May 19th, 2006

4.2 APPENDIX B: SERIES 2000 TCS CDI CONFIGURATION FILE

The configuration file for the Series 2000 TCS CDI is listed below. The file is located in the
source tree at sgv\src\common\tcscdi\vms\tcsdata.cfg.

[TCS]

#TCS identifiers
Corridor ID = 1
Site ID = 2
System ID = 1
SystemName = PASS2K

#CDI options
CommandsEnabled = 1
DiagLevel = 1

[Device]

#Pasadena Series 2000 TCS devices
Intersection = 1-999
Detector = 1-2999, 6251-6258
Section = 1-100

[DetectorConfiguration]

DetectorConfiguration data is not available in Series 2000.
Config data must be specified below in the following format:

detector id =
detClass,
detType,
direction,
laneNumber,
roadwayName

Example: 2201 = 3, 2, 2, 1, Colorado Blvd.

See the IENTCSData.idl for detClass and detType enumerations.
See the location.idl for the direction enumeration.

Default values are specified under detector id "0". Default
values are reported for detectors that are not listed below.

Note: The CDI must be restarted for changes to be applied.

0 = 3, 2, 10, 0, Unknown

TCS CDI Implementation Recommendations – Final, Revision 5

Countywide Information Exchange Network Page 4-13 May 19th, 2006

4.3 APPENDIX C: DIAGNOSTIC SETTINGS IN THE SITE SERVER PROGRAM

The Site Server program can be configured to write diagnostic output to its standard output,
which CDI Developers may find helpful when diagnosing problems with CDI programs. The
configuration file for the Site Server (usually sitesvr.cfg) contains a “System” section with
settings similar to the following:
[System]

system ids
CorridorID = 1
SiteID = 1
SystemID = 1
DiagLevel = 10

The DiagLevel configuration item governs diagnostic output that the Site Server prints for data
that it receives from a CDI. To change the quantity of CDI communication that the Site Server
prints out, change the DiagLevel setting in the configuration file, then stop and restart the Site
Server.

Table 4-1 below lists the diagnostic levels available with the Site Server:

Table 4-1: Diagnostic Levels for the Site Server

DIAGNOSTIC
LEVEL EXPLANATION

0 Generate no diagnostic messages for CDI communication

> 0 Print the time required for the Site Server to call the CDI’s getDeviceEventDataList
method, in milliseconds

10 Print data in intersection related events received from the CDI, as well as the time
required to make the getDeviceEventDataList call to the CDI

11 Print data in detector related events received from the CDI, as well as the time
required to make the getDeviceEventDataList call to the CDI

12 Print data in section related events received from the CDI, as well as the time
required to make the getDeviceEventDataList call to the CDI

>20 At startup, prints a summary of the types of device data that the Site Server is
requesting from the TCS CDI, as well as the time required to make the
getDeviceEventDataList call to the CDI

>22 At startup, prints a summary of the types of device data that the Site Server is
requesting from the TCS CDI. Each time that the Site Server requests calls the
CDI’s getDeviceEventDataList method, prints the list of devices and data types
requested, as well as the time required to make the call.

	1. INTRODUCTION
	1.1 PURPOSE OF THE DOCUMENT
	1.2 INTENDED AUDIENCE
	1.3 ASSUMPTIONS

	1.
	2. TCS CDI INTERFACE REQUIREMENTS
	2.1 CORBA INTERFACES
	2.1.1 IENRTData.idl
	2.1.1.1 Event
	2.1.1.2 EventSeq
	2.1.1.3 EventGroup and EventGroupSeq

	2.1.2 TCS.idl
	2.1.2.1 Mode Enumeration
	2.1.2.2 SpecialFunction Enumeration
	2.1.2.3 Device Structure
	2.1.2.4 DeviceList Sequence
	2.1.2.5 Version Structure
	2.1.2.6 Status Enumeration
	2.1.2.7 ConfigurationAccessor Interface

	2.1.3 TCSData.idl
	2.1.3.1 Code Typedef
	2.1.3.2 CodeList Sequence
	2.1.3.3 DeviceDataTypes Structure
	2.1.3.4 DeviceDataTypeList Sequence
	2.1.3.5 DeviceCode Structure
	2.1.3.6 DeviceCodeList Sequence
	2.1.3.7 DataAccessor Interface
	2.1.3.7.1 Configuration Retrieval Methods
	2.1.3.7.2 Data Retrieval Method
	2.1.3.7.3 Destroy Method

	2.1.3.8 DataAccessorFactory Interface

	2.1.4 TCSCommand.idl
	2.1.4.1 CommandAccessor Interface
	2.1.4.1.1 setCDIPlan Method
	2.1.4.1.2 changeMode Method
	2.1.4.1.3 releaseControl Method

	2.1.4.2 CommandAccessorFactory Interface

	2.2 TCS CDI PERFORMANCE REQUIREMENTS
	2.2.1 Data Access Requirements
	2.2.2 Data Reporting Requirements
	2.2.2.1 IEN_INTERSECTIONINFO
	2.2.2.2 IEN_INTERSECTIONRTSTATUS
	2.2.2.3 IEN_INTERSECTIONRTSUMMARY
	2.2.2.4 IEN_PHASE_STATEDATA
	2.2.2.5 IEN_PEDPHASE_STATEDATA
	2.2.2.6 IEN_VEHCALL_STATEDATA
	2.2.2.7 IEN_LASTCYCLE_PHASEDATA
	2.2.2.8 IEN_TP_PHASEDATA
	2.2.2.9 IEN_DETECTORINFO
	2.2.2.10 IEN_DETECTORSTATE
	2.2.2.11 IEN_SECTIONINFO
	2.2.2.12 IEN_SECTIONSTATE

	2.2.3 Command Execution Requirements

	2.3 USAGE OF THE CORBA NAMING SERVICE
	2.3.1 IEN Naming Service Location
	2.3.2 Published Names

	2.4 TCS CDI EVENT FORMAT
	2.4.1 Event Types
	2.4.2 Command Events
	2.4.2.1 IEN_COMMANDRETURN Event Type

	2.4.3 Intersection Events
	2.4.3.1 IEN_INTERSECTIONINFO Event Type
	2.4.3.2 IEN_INTERSECTIONRTSTATUS Event Format
	2.4.3.3 IEN_INTERSECTIONRTSUMMARY Event Format
	2.4.3.4 IEN_PHASE_STATEDATA Event Type
	2.4.3.5 IEN_PEDPHASE_STATEDATA Event Type
	2.4.3.6 IEN_VEHCALL_STATEDATA Event Type
	2.4.3.7 IEN_LASTCYCLE_PHASEDATA Event Type
	2.4.3.8 IEN_TP_PHASEDATA Event Type

	2.4.4 Detector Events
	2.4.4.1 IEN_DETECTORINFO Event Type
	2.4.4.2 IEN_DETECTORSTATE Event Type

	2.4.5 Section Events
	2.4.5.1 IEN_SECTIONINFO Event Type
	2.4.5.2 IEN_SECTIONSTATE Event Type

	3. EXAMPLE IMPLEMENTATION: SERIES 2000 TCS CDI
	3.1 CORBA ORBS USED
	3.2 IMPLEMENTATION ENVIRONMENT
	3.3 CONFIGURATION DATA
	3.4 SERIES 2000 TCS CDI MAIN ROUTINE

	1.
	4. APPENDICES
	4.1 APPENDIX A: TCS CDI CORBA IDL FILES
	4.1.1 IENRTData.idl
	4.1.2 TCS.idl
	4.1.3 TCSData.idl
	4.1.4 TCSCommand.idl

	4.2 APPENDIX B: SERIES 2000 TCS CDI CONFIGURATION FILE
	4.3 APPENDIX C: DIAGNOSTIC SETTINGS IN THE SITE SERVER PROGRAM

