GLAC-IRWMP
Surface Water Quality Objectives & Targets

Introduction

The quality of surface water is one of the major water resources challenges for the Greater Los Angeles County (GLAC) Region, due in large part to the impact of dry and wet weather flows from heavily urbanized areas, which constitute a significant portion of the Region. Because of this, the Los Angeles Regional Water Quality Control Board (LARWQCB) identified storm water and urban runoff as some of the leading sources of pollutants to surface waters in Southern California (LARWQCB 2002). Urban runoff-associated pollutants may contribute to a loss of beneficial uses of waterbodies in the Region. For instance bacteria, metals and nutrients have been found to directly impact human and/or ecosystem health, which may lead to significant economic costs in terms of health care, loss of productivity and tourism. This is particularly important for the GLAC Region which is well known for the recreational opportunities afforded by its wealth of natural resources. In addition, and, no less significant, is the negative impact urban runoff can have on the availability of the already-limited usable water supply in the Region.

Efforts to improve the quality of urban storm water runoff and mitigate dry weather flows, therefore, lead to improvements in water quality for surface waterbodies as well as groundwater. This in turn can make these resources available for use as sources of water supply as well as, in the case of surface water, make them more suitable for recreational and habitat purposes.

For the GLAC IRWM Region, surface water quality targets were set in terms of establishing storm water capture and treatment capacity (i.e. available volume to capture the volume of runoff from the design storm), emphasizing areas identified as having a greater need, in order to address this major source of surface water quality degradation. These targets and the methodology used to arrive at them are presented in the following sections.

Goal

Improve the quality of dry and wet weather runoff to help meet beneficial use requirements for the region’s receiving water bodies.

Objective

*Develop new stormwater capture capacity*¹ *(or equivalent) spatially dispersed to reduce region-wide pollutant loads, emphasizing higher priority areas*².

¹ Stormwater capture capacity assumes (1) providing storage volume equivalent to runoff from the 0.75-inch, 24-hour design storm event, (2) designing BMPs to retain the captured volume to the maximum extent practicable via infiltration, evapotranspiration, or harvest and use, and (3) designing BMPs to provide
Targets

Surface water quality targets for the GLAC IRWM Region were developed based on the goal of capturing and treating (see Footnote 1) runoff generated by a ¾” storm over the entire Region, excluding catchments that were greater than or equal to 98% vacant and less than or equal to 1% impervious, and focusing efforts on higher priority areas.

High priority areas were identified based on weighting of the following inputs: 1) Wet weather priority areas; and 2) areas prioritized based on receiving water drainage.

Wet weather priority areas

Wet weather priority areas were identified using the Structural BMP Prioritization and Analysis Tool (SBPAT) which is a GIS-based decision support tool that may be used to identify optimal areas for placement of stormwater Best Management Practice (BMP) controls (see the SBPAT User’s Guide for more information [Geosyntec 2008]). The identification of GLAC IRWM surface water quality targets utilized the first step of SBPAT, which is catchment prioritization. This step assigns priority levels to individual catchments in the Region through consideration of catchment-specific characteristics, namely pollutant generation and location.

Pollutant generation is determined based on rainfall, as well as the land use of the catchment, which provides information on average imperviousness, typical pollutants expected to be generated and pollutant Event Mean Concentrations (EMCs), which are concentrations of pollutants expected to be found in runoff from that land use. Location is used to flag those catchments that drain to impaired waterbodies, with catchments draining to waterbodies with approved TMDLs prioritized higher than those draining to waterbodies listed on the 303(d) list, which are in turn assigned a higher priority to those draining to waterbodies without impairments.

For purposes of prioritization, the GLAC region was split into major watersheds, with prioritization normalized according to these watersheds. In some Subregions, dividing by major watersheds divided individual Subregions into multiple subareas, however, with the exception of a few catchments (see Figure 1), portions of different Subregions were not grouped together for normalization.

Results of this prioritization are shown in Figure 1.

Footnote 1: Effective treatment to address pollutants of concern for the remaining portion of the captured volume that is not retained. Projects deviating from these specifications may be demonstrated to be equivalent based on comparison of average annual volume captured and/or average annual pollutant load reduction for pollutants of concern. Pollutants of concern are defined as those pollutants expected to be generated from the land uses within the subwatershed and for which the downstream water bodies are impaired (TMDL, 303(d) listed).

Footnote 2: 303d impairments resulting from legacy pollutants and natural and non-urban runoff sources were excluded from consideration, based on input provided by individual Subregions.
Receiving Water Analysis

Since the SBPAT analysis is primarily applicable to wet weather and emphasizes land use as a prioritization metric, an additional layer of analysis was added to give emphasis to dry weather flows as well as impacts to receiving waters.

The receiving water prioritization was based on catchment drainage, by producing maps showing 1) rankings of catchments based on the number of approved TMDLs in the waterbodies to which they drain, 2) rankings of catchments based on the number of 303(d) listings (without approved TMDLs) in the waterbodies to which they drain (see footnote 2), and, for those Subregions that have them, 3) catchments that drain into "Areas of Special Biological Significance" (ASBS). Through work with each Subregion as well as discussions with the Water Quality Working Group, protection of ASBSs from urban stormwater runoff was identified as a high priority surface water quality concern. Not all Subregions contain ASBSs, however, so in those that do not contain them, only the first two maps were used to create a composite receiving water prioritization, with each given a weight of 45 and 20 respectively out of a total of 65 possible points. Catchments in Subregions that do contain ASBSs were prioritized by weighting all three maps 45, 20 and 35 out of a total of 100 possible points.

The composite Receiving Water map created from this prioritization scheme is shown in Figure 2.

Composite Prioritization

A final composite map was created by combining the wet weather and receiving water maps (Figures 1 and 2) in order to arrive at an overall prioritization for all catchments in the GLAC Region. The wet weather and receiving water maps were given equal weight in this composite, and, as described earlier, catchments that were greater than or equal to 98% vacant and less than or equal to 1% impervious were excluded from the prioritization. Catchments were grouped into quantiles and assigned a rank from 1 to 5, with 5 being the highest priority.

The cumulative prioritization map for the GLAC Region is shown in Figure 3, with maps of each Subregion shown in Figures 4 through 8.

IRWM water quality targets are presented in Table 1. As stated above, these targets were calculated based on the goal of creating capture and treatment capacity (see footnote 1) for the ¾” storm across the GLAC Region, excluding undeveloped catchments, and with an emphasis on high priority catchments. It should be noted that these targets do not take into account existing water quality projects. Due to the large number of potential existing projects, determining the benefits of existing projects and subtracting them from the overall targets is left to the discretion of individual Subregions.
Table 1. IRWMP Water Quality Targets

<table>
<thead>
<tr>
<th>Management Capacity (AF/1/4" storm)</th>
<th>North Santa Monica Bay</th>
<th>Upper Los Angeles River</th>
<th>Upper San Gabriel and Rio Hondo</th>
<th>Lower San Gabriel and Los Angeles Rivers</th>
<th>South Bay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4200</td>
<td>14800</td>
<td>11500</td>
<td>14400</td>
<td>12600</td>
<td>57500</td>
</tr>
<tr>
<td>5 (highest priority)</td>
<td>1500</td>
<td>2500</td>
<td>1600</td>
<td>1700</td>
<td>2800</td>
<td>10100</td>
</tr>
<tr>
<td>4</td>
<td>1300</td>
<td>3400</td>
<td>1600</td>
<td>2600</td>
<td>3500</td>
<td>12400</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>2500</td>
<td>1700</td>
<td>2300</td>
<td>2900</td>
<td>10000</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>2900</td>
<td>2500</td>
<td>3200</td>
<td>1900</td>
<td>11000</td>
</tr>
<tr>
<td>1 (lowest priority)</td>
<td>400</td>
<td>3400</td>
<td>4100</td>
<td>4600</td>
<td>1600</td>
<td>14100</td>
</tr>
</tbody>
</table>

1The calculation of 1/4" storm capture capacity excludes all catchments greater than or equal to 98% vacant and less than or equal to 1% impervious.
References

Appendix A – Maps of Water Quality Targets by IRWMP Subregion
Receiving Water Prioritization: Composite

ASBS, TMDLs, and 303(d) Impairments combined with 35%, 45%, 20% weighting, normalized to a 1-5 scale by subregion:

- 5: Highest Priority
- 4
- 3
- 2
- 1: Lowest Priority
- Not used (open space)

Map created: February 10, 2013
Water Quality Prioritization: Composite (Equal Weighting)

Water Quality Priorities:
Composite
Receiving water score and CPI combined with equal weighting, quantiles by subregion:

- **5** Highest Priority
- **4**
- **3**
- **2**
- **1** Lowest Priority
- Not used (open space)

Other Features
- Planning Region Boundary
- Highway
- County Line

Map created: February 10, 2013
Water Quality Prioritization: Composite (Equal Weighting)

Water Quality Priorities: Composite
Receiving water score and CPI combined with equal weighting, quantities by subregion:

- 5: Highest Priority
- 4
- 3
- 2
- 1: Lowest Priority

Not used (open space)

Map created: February 10, 2013
Water Quality Prioritization: Composite (Equal Weighting)

Water Quality Priorities: Composite
Receiving water score and CPI combined with equal weighting, quantiles by subregion:

- 5: Highest Priority
- 4
- 3
- 2
- 1: Lowest Priority
- Not used (open space)
Los Angeles Integrated Regional Water Management Plan Update

Water Quality Prioritization: Composite (Equal Weighting)

Upper San Gabriel and Rio Hondo Rivers

Water Quality Priorities: Composite
Receiving water score and CPI combined with equal weighting, quantiles by subregion:

- 5: Highest Priority
- 4
- 3
- 2
- 1: Lowest Priority
- Not used (open space)
Los Angeles Integrated Regional Water Management Plan Update

Water Quality Prioritization: Composite (Equal Weighting)

Map created: February 10, 2013
Los Angeles Integrated Regional Water Management Plan Update

Water Quality Prioritization: Composite (Equal Weighting) South Santa Monica Bay

Water Quality Priorities: Composite
Receiving water score and CPI combined with equal weighting, quantiles by subregion:

- **5** Highest Priority
- **4**
- **3**
- **2**
- **1** Lowest Priority
- Not used (open space)

Other Features
- Planning Region Boundary
- Highway
- County Line

Map created: February 10, 2013